
(Syntactic) Parsing in R

Martin Schweinberger

December 28, 2017

This post will exemplify how to syntactically parse a corpus with R (the
function is available via
http://martinschweinberger.de/docs/scripts/paRsing.r).
Syntactic Parsing is a form of annotating text in which POS tags are assigned
to lexical items and then lexical items are grouped together in phrasal con-
stituents. Syntactic parsing is thus an extension of POS tagging as syntactic
parsing requires POS tagging. This post will not go into the theoretical
background and various approaches to syntactic parsing – syntactic parsing
is quite complex both in terms of theory and practical implementation - but
it will simply show how you can use R to parse some text based on the
Apache OpenNLP Maxent Parser.

In R we can syntactically parse large amounts of text using the openNLP
package, which also requires the NLP package and installing the models on
which the openNLP package works – you can find more information on the
openNLP package and how it works here:
http://cran.r-project.org/web/packages/openNLP/openNLP.pdf.
The openNLP package uses the Apache OpenNLP Maxent Parser which is
a trained parser, which works in two steps. In a first step, the included
POS tagger assigns POS tags based on the probability of what the correct
POS tag is – the POS tag with the highest probability is selected. In a next
step, the lexical items are grouped together into phrasal and finally clausal
constituents.

Unforunately, there is a real issue when R interfaces with Java (which is
what we do when we use the openNLP package) – R will report an error:

java.lang.OutOfMemoryError: Java heap space

1

Martin SchweinbergerText Mining with R: Building a Text Classifier

This error indicates that the memory that is taken up by the task is
exploding. There is a way around it which is however not very nice: you
need to close R and then run your function again (the command gc() is also
meant to prevent the memory from becoming too big but it does not seem
to work properly). So, if this error occurs, close R, open it again, then call
the function, and apply it to some text.

Below is an example of how you can implement syntactic parsing in R.

1 # write function

2 paRsing <- function(path){

3 require("NLP")

4 require("openNLP")

5 require("openNLPmodels.en")

6 require("stringr")

7 corpus.files = list.files(path = path , pattern = NULL , all.

files = T,

8 full.names = T, recursive = T, ignore.case = T, include.

dirs = T)

9 corpus.tmp <- lapply(corpus.files , function(x) {

10 scan(x, what = "char", sep = "\t", quiet = T) })

11 corpus.tmp <- lapply(corpus.tmp , function(x){

12 x <- paste(x, collapse = " ") })

13 corpus.tmp <- lapply(corpus.tmp , function(x) {

14 x <- enc2utf8(x) })

15 corpus.tmp <- gsub(" {2,}", " ", corpus.tmp)

16 corpus.tmp <- str_trim(corpus.tmp , side = "both")

17 sent_token_annotator <- Maxent_Sent_Token_Annotator ()

18 word_token_annotator <- Maxent_Word_Token_Annotator ()

19 parse_annotator <- Parse_Annotator ()

20 Corpus <- lapply(corpus.tmp , function(x){

21 x <- as.String(x) })

22 lapply(Corpus , function(x){

23 annotated <- annotate(x, list(sent_token_annotator ,

word_token_annotator))

24 # Compute the parse annotations only.

25 parsed <- parse_annotator(x, annotated)

26 # Extract the formatted parse trees.

27 parsedtexts <- sapply(parsed$features , ’[[’, "parse")

28 # Read into NLP Tree objects.

29 parsetrees <- lapply(parsedtexts , Tree_parse)

30 gc()

31 return(list(parsedtexts , parsetrees))

32 })

33 }

34

35

36 ## ##

37 # test the function

2

Martin Schweinberger Text Mining with R: Building a Text Classifier

38 parsetest <- paRsing(path = "C:\\03 - MyProjects \\ PosTagging \\

TestCorpus")

The parsed first sentence is shown on the R GUI as follows:

1 # inspect the first sentence

2 parsetest [[1]][[1]][[1]]

3

4 #[1] "(TOP (S (NP (DT This)) (VP (VBZ is) (NP (NP (DT the) (

JJ first) (NN sentence)) (PP (IN in) (NP (NP (DT the) (JJ

first) (NN file)) (PP (IN of) (NP (DT the) (NN test) (NN

corpus)))))))(. .)))"

You can use the output to find e.g. all noun phrases in a text or to create
fancy tree diagrams like the one here:

I hope this helps and I will also be posting some updates and show what
parsing can be used for.

3

