Text Mining the COVID-19 discourse in
the Australian Twittersphere
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Bridging the gap between linguistics and text mining: an analysis of COVID-19 discourse on Twitter

Why analyze COVID-19 discourse on Twitter?

- COVID-19 discourse treated as one big lump of words

- Focus on hashtags or use of small/unclean data sets

How can we as linguists improve text mining of discourse
around COVID-19 on OzTwitter?

Jan. - Apr. 2019 Jan. - Apr. 2020
Tweets Words/Elements  Tweets Words/Elements
Before processing 889,192 18,903,669 871,826 19,362,115
After processing 769,165 17,288,018 753,630 17,726,090
COVID-19 tweets 41,342 1,327,874

Martin Schweinberger | Michael Haugh | Sam Hames



I A
Bridging the gap between linguistics and text mining: an analysis of COVID-19 discourse on Twitter

hili:ihzﬁ

ettt adedblithnl

Figure

Martin Schweinberger | Michael Haugh | Sam Hames 3



Bridging the gap between linguistics and text mining: an analysis of COVID-19 discourse on Twitter

hna conR e oA
3
13-
4-
1n-
01 =
-
werai 18wzl v Julhie
13 ne
s
LES

dslanzig CCAININC ockdan
FRES o7
[
- s
s .
a3 . 'h/_/“’“\/
Q- aa-
sl - . ]

Martin Schweinberger | Michael Haugh | Sam Hames



S —
] =

Bridging the gap between linguistics and text mining: an analysis of COVID-19 discourse on Twitter

Foasad

Phase 7

Figure 3: Results of the PAM clustering showing
the data-driven periodization of the data

Figure 4: Percantages of COVID19-related tweets by
period
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Figure 5: Distribution of topics across periods Figure 6: Distribution
(bar plot) (loess smoothed)

of topics across periods

Martin Schweinberger | Michael Haugh | Sam Hames



Bridging the gap between linguistics and text mining: an analysis of COVID-19 discourse on Twitter

Outlook

Aim: create a prototype of a text mining application that is
both time-sensitive and differentiates between different
sub-discourses (topics)
Moving forward

- Apply analysis to more data

- Apply same method to other phenomena (BLM,
Bushfires)
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Thank you very much!
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